POSITION SPECIFIC 🔍 - TERT-ALKYLATION OF KETONES

M.T.Reetz , I.Chatziiosifidis, U.Löwe and W.F.Maier Institut für Organische Chemie und Biochemie der Universität 53 Bonn, West-Germany

<u>Summary</u>: Lewis acid mediated *A* -tert-alkylation of ketones via their silyl enol ethers is possible utilizing a variety of branched tertiary alkyl halides. The latter react position specifically without undesired rearrangements.

 \checkmark -Tertiary alkylation of carbonyl compounds cannot be achieved using enolate anion chemistry due to elimination¹. Recently we solved this classical problem by reacting silyl enol ethers with tertiary alkyl halides in the presence of such Lewis acids as ZnCl₂, FeCl₃ or TiCl₄² :

Whereas the method allows for the regiospecific tert-alkylation of unsymmetrical ketones, position specificity in the tertiary halide has not yet been studied. This is a potentially serious problem, since it is known that many attempted Friedel-Crafts tert-alkylations lead to the predominance of products derived from rearranged secondary carbonium ions³. Hydride ion abstraction from the products is also observed as an undesired side reaction³. We now wish to report that our standard tert-alkylation procedure using TiCl₄ at -40° to -60° C circumvents such difficulties and affords <u>position specifically</u> the desired tert-alkylated ketones. Isomers resulting from rearrangement or other processes are not observed. Utilizing the appropriate tertiary chlorides and silyl enol ethers, we have prepared the tert-alkylated ketones illustrated in Table 1. All compounds gave correct elemental analyses and were characterized by IR, H-NMR and ¹³C-NMR spectroscopy.

1427

Table 1. « -Tert-alkylated Ketones				
Ketone ^{a)}		Yield ^{b)} %	Ketone	Yield %
	l₃ -CH₂CH₃ ¹₃	71 (82)	С СН3	65 (80)
	H₃ —CH(CH₃)₂ H₃	46 (55)	CH3	60 (73)
	Н ₃ –СН <u>2</u> СН <u>2</u> СН ₃ Н2СН2СН3	73 (81)	О СН ₃ СН ₂ СН ₂ —С—СНСН ₂ СН	¹³ 60
0 ॥ (СН₃)₂СН−С∙	СН3 СН3 -С-С-СН2СН3 -С-С-СН2СН3 -СН3 СН3	52 (64)	СН ₃ —С–СН ₃ І СН ₂ СН ₃	(68)

- a) The bold faced lines indicate the new C-C bonds.
- b) Yields refer to isolated products based on silyl enol ethers. The numbers in brackets pertain to NMR yields.

<u>Acknowledgements</u>: This work was supported by the <u>Fonds der Chemischen Industrie</u> and the Deutsche Forschungsgemeinschaft.

References:

- 1. H.O.House, Modern Synthetic Reactions, Benjamin, Menlo Park, 1972, p. 533.
- 2. M.T.Reetz and W.F.Maier, Angew.Chem. <u>90</u>, 50 (1978); Angew.Chem.Int.Ed.Engl. <u>17</u>, 48 (1978); M.T.Reetz and K.Schwellnus, Tetrahedron Lett. <u>1978</u>, 1455; T.H.Chan, I.Paterson and J.Pinsonnault, Tetrahedron Lett. <u>1977</u>, 4183.
- F.A.Drahowzal, in G.A.Olah, Friedel-Crafts and Related Reactions, Vol.II, Interscience, New York, 1964, p. 417; B.S.Friedman, F.L.Morritz, C.J. Morrissey and R.Koncas, J.Amer.Chem.Soc. <u>80</u>, 5867 (1958); A.A.Khalaf and R.M.Roberts, J.Org.Chem. <u>35</u>, 3717 (1970), and literature cited therein.

(Received in UK 9 February 1979)